Thursday, November 17, 2011

gold price 17-11 -2011

gold price 17-11 -2011

gold price 17-11 -2011

you can see
here

http://www.goldalert.com/

Exchange Rates all oyer the world 17-11-2011

Exchange Rates all oyer the world 17-11-2011


Exchange Rates all oyer the world 17-11-2011

from here

http://www.exchangerate.com/

or

here
http://www.oanda.com/lang/ar/currency/converter/

Exchange Rates all oyer the world 17-11-2011

Diamond

Diamond

Diamond




This article is about the mineral. For the gemstone, see Diamond (gemstone). For other uses, including the shape ◊, see Diamond (disambiguation).
Diamond

The slightly misshapen octahedral shape of this rough diamond crystal in matrix is typical of the mineral. Its lustrous faces also indicate that this crystal is from a primary deposit.
General
Category Native Minerals
Chemical formula C
Strunz classification 01.CB.10a
Identification
Molar mass 12.01 g·mol-1
Color Typically yellow, brown or gray to colorless. Less often blue, green, black, translucent white, pink, violet, orange, purple and red.
Crystal habit Octahedral
Crystal system Isometric-Hexoctahedral (Cubic)
Cleavage 111 (perfect in four directions)
Fracture Conchoidal (shell-like)
Mohs scale hardness 10
Luster Adamantine
Streak Colorless
Diaphaneity Transparent to subtransparent to translucent
Specific gravity 3.52±0.01
Density 3.5–3.53 g/cm3
Polish luster Adamantine
Optical properties Isotropic
Refractive index 2.418 (at 500 nm)
Birefringence None
Pleochroism None
Dispersion 0.044
Melting point Pressure dependent
References [1][2]

In mineralogy, diamond (from the ancient Greek αδάμας – adámas "unbreakable") is an allotrope of carbon, where the carbon atoms are arranged in a variation of the face-centered cubic crystal structure called a diamond lattice. Diamond is less stable than graphite, but the conversion rate from diamond to graphite is negligible at ambient conditions. Diamond is renowned as a material with superlative physical qualities, most of which originate from the strong covalent bonding between its atoms. In particular, diamond has the highest hardness and thermal conductivity of any bulk material. Those properties determine the major industrial application of diamond in cutting and polishing tools.

Diamond has remarkable optical characteristics. Because of its extremely rigid lattice, it can be contaminated by very few types of impurities, such as boron and nitrogen. Combined with wide transparency, this results in the clear, colorless appearance of most natural diamonds. Small amounts of defects or impurities (about one per million of lattice atoms) color diamond blue (boron), yellow (nitrogen), brown (lattice defects), green (radiation exposure), purple, pink, orange or red. Diamond also has relatively high optical dispersion (ability to disperse light of different colors), which results in its characteristic luster. Excellent optical and mechanical properties, combined with efficient marketing, make diamond the most popular gemstone.

Most natural diamonds are formed at high-pressure high-temperature conditions existing at depths of 140 to 190 kilometers (87 to 120 mi) in the Earth mantle. Carbon-containing minerals provide the carbon source, and the growth occurs over periods from 1 billion to 3.3 billion years (25% to 75% of the age of the Earth). Diamonds are brought close to the Earth surface through deep volcanic eruptions by a magma, which cools into igneous rocks known as kimberlites and lamproites. Diamonds can also be produced synthetically in a high-pressure high-temperature process which approximately simulates the conditions in the Earth mantle. An alternative, and completely different growth technique is chemical vapor deposition (CVD). Several non-diamond materials, which include cubic zirconia and silicon carbide and are often called diamond simulants, resemble diamond in appearance and many properties. Special gemological techniques have been developed to distinguish natural and synthetic diamonds and diamond simulants

HistorySee also: Diamond (gemstone)
The name diamond is derived from the ancient Greek αδάμας (adámas), "proper", "unalterable", "unbreakable", "untamed", from ἀ- (a-), "un-" + δαμάω (damáō), "I overpower", "I tame".[3] Diamonds are thought to have been first recognized and mined in India, where significant alluvial deposits of the stone could be found many centuries ago along the rivers Penner, Krishna and Godavari. Diamonds have been known in India for at least 3,000 years but most likely 6,000 years.[4]

Diamonds have been treasured as gemstones since their use as religious icons in ancient India. Their usage in engraving tools also dates to early human history.[5][6] The popularity of diamonds has risen since the 19th century because of increased supply, improved cutting and polishing techniques, growth in the world economy, and innovative and successful advertising campaigns.[7]

In 1772, Antoine Lavoisier used a lens to concentrate the rays of the sun on a diamond in an atmosphere of oxygen, and showed that the only product of the combustion was carbon dioxide, proving that diamond is composed of carbon. Later in 1797, Smithson Tennant repeated and expanded that experiment. By demonstrating that burning diamond and graphite releases the same amount of gas he established the chemical equivalence of these substances.[8]

The most familiar use of diamonds today is as gemstones used for adornment, a use which dates back into antiquity. The dispersion of white light into spectral colors is the primary gemological characteristic of gem diamonds. In the 20th century, experts in gemology have developed methods of grading diamonds and other gemstones based on the characteristics most important to their value as a gem. Four characteristics, known informally as the four Cs, are now commonly used as the basic descriptors of diamonds: these are carat, cut, color, and clarity.[9] A large, flawless diamond is known as a paragon.

Material propertiesMain articles: Material properties of diamond and Crystallographic defects in diamond

Theoretically predicted phase diagram of carbon
Diamond and graphite are two allotropes of carbon: pure forms of the same element that differ in structure.A diamond is a transparent crystal of tetrahedrally bonded carbon atoms (sp3) that crystallizes into the diamond lattice which is a variation of the face centered cubic structure. Diamonds have been adapted for many uses because of the material's exceptional physical characteristics. Most notable are its extreme hardness and thermal conductivity (900–2,320 W·m−1·K−1),[10] as well as wide bandgap and high optical dispersion.[11] Above 1,700 °C (1,973 K / 3,583 °F) in vacuum or oxygen-free atmosphere, diamond converts to graphite; in air, transformation starts at ~700 °C.[12] Diamond's ignition point is 720 - 800 °C in oxygen and 850 - 1,000 °C in air.[13] Naturally occurring diamonds have a density ranging from 3.15–3.53 g/cm3, with pure diamond close to 3.52 g/cm3.[1] The chemical bonds that hold the carbon atoms in diamonds together are weaker than those in graphite. In diamonds, the bonds form an inflexible three-dimensional lattice, whereas in graphite, the atoms are tightly bonded into sheets, which can slide easily over one another, making the overall structure weaker.[14]

HardnessDiamond is the hardest known natural material on the Mohs scale of mineral hardness, where hardness is defined as resistance to scratching and is graded between 1 (softest) and 10 (hardest). Diamond has a hardness of 10 (hardest) on this scale.[15] Diamond's hardness has been known since antiquity, and is the source of its name.

Diamond hardness depends on its purity, crystalline perfection and orientation: hardness is higher for flawless, pure crystals oriented to the <111> direction (along the longest diagonal of the cubic diamond lattice).[16] Therefore, whereas it might be possible to scratch some diamonds with other materials, such as boron nitride, the hardest diamonds can only be scratched by other diamonds and nanocrystalline diamond aggregates.

The hardness of diamond contributes to its suitability as a gemstone. Because it can only be scratched by other diamonds, it maintains its polish extremely well. Unlike many other gems, it is well-suited to daily wear because of its resistance to scratching—perhaps contributing to its popularity as the preferred gem in engagement or wedding rings, which are often worn every day.

The hardest natural diamonds mostly originate from the Copeton and Bingara fields located in the New England area in New South Wales, Australia. These diamonds are generally small, perfect to semiperfect octahedra, and are used to polish other diamonds. Their hardness is associated with the crystal growth form, which is single-stage crystal growth. Most other diamonds show more evidence of multiple growth stages, which produce inclusions, flaws, and defect planes in the crystal lattice, all of which affect their hardness. It is possible to treat regular diamonds under a combination of high pressure and high temperature to produce diamonds that are harder than the diamonds used in hardness gauges.[17]

Somewhat related to hardness is another mechanical property toughness, which is a material's ability to resist breakage from forceful impact. The toughness of natural diamond has been measured as 7.5–10 MPa·m1/2.[18][19] This value is good compared to other gemstones, but poor compared to most engineering materials. As with any material, the macroscopic geometry of a diamond contributes to its resistance to breakage. Diamond has a cleavage plane and is therefore more fragile in some orientations than others. Diamond cutters use this attribute to cleave some stones, prior to faceting.[20] "Impact toughness" is one of the main indexes to measure the quality of synthetic industrial diamonds.[13]

Electrical conductivityOther specialized applications also exist or are being developed, including use as semiconductors: some blue diamonds are natural semiconductors, in contrast to most diamonds, which are excellent electrical insulators.[21] The conductivity and blue color originate from boron impurity. Boron substitutes for carbon atoms in the diamond lattice, donating a hole into the valence band.[21]

Substantial conductivity is commonly observed in nominally undoped diamond grown by chemical vapor deposition. This conductivity is associated with hydrogen-related species adsorbed at the surface, and it can be removed by annealing or other surface treatments.[22][23]

Surface propertyDiamonds are lipophilic and hydrophobic, which means the diamonds' surface cannot be wet by water but can be easily wet and stuck by oil. This property can be utilized to extract diamonds using oil when making synthetic diamonds.[13]

Chemical stabilityDiamonds' chemical property is very stable. Under room temperature diamonds do not react with any chemical reagents including various kinds of acid and alkali. Diamonds' surface can only be oxidized a little by just a few oxidants under high temperature (below 1,000 °C). So acid and alkali can be used to refine synthetic diamonds.[13]

ColorMain article: Diamond color

Brown diamonds at the National Museum of Natural History in Washington, D.C.Diamond has a wide bandgap of 5.5 eV corresponding to the deep ultraviolet wavelength of 225 nanometers. This means pure diamond should transmit visible light and appear as a clear colorless crystal. Colors in diamond originate from lattice defects and impurities. The diamond crystal lattice is exceptionally strong and only atoms of nitrogen, boron and hydrogen can be introduced into diamond during the growth at significant concentrations (up to atomic percents). Transition metals Ni and Co, which are commonly used for growth of synthetic diamond by high-pressure high-temperature techniques, have been detected in diamond as individual atoms; the maximum concentration is 0.01% for Ni[24] and even much less for Co. Virtually any element can be introduced to diamond by ion implantation.[25]

Nitrogen is by far the most common impurity found in gem diamonds and is responsible for the yellow and brown color in diamonds. Boron is responsible for the blue color.[11] Color in diamond has two additional sources: irradiation (usually by alpha particles), that causes the color in green diamonds; and plastic deformation of the diamond crystal lattice. Plastic deformation is the cause of color in some brown[26] and perhaps pink and red diamonds.[27] In order of rarity, yellow diamond is followed by brown, colorless, then by blue, green, black, pink, orange, purple, and red.[20] "Black", or Carbonado, diamonds are not truly black, but rather contain numerous dark inclusions that give the gems their dark appearance. Colored diamonds contain impurities or structural defects that cause the coloration, while pure or nearly pure diamonds are transparent and colorless. Most diamond impurities replace a carbon atom in the crystal lattice, known as a carbon flaw. The most common impurity, nitrogen, causes a slight to intense yellow coloration depending upon the type and concentration of nitrogen present.[20] The Gemological Institute of America (GIA) classifies low saturation yellow and brown diamonds as diamonds in the normal color range, and applies a grading scale from "D" (colorless) to "Z" (light yellow). Diamonds of a different color, such as blue, are called fancy colored diamonds, and fall under a different grading scale.[20]

In 2008, the Wittelsbach Diamond, a 35.56-carat (7.11 g) blue diamond once belonging to the King of Spain, fetched over US$24 million at a Christie's auction.[28] In May 2009, a 7.03-carat (1.41 g) blue diamond fetched the highest price per carat ever paid for a diamond when it was sold at auction for 10.5 million Swiss francs (6.97 million euro or US$9.5 million at the time).[29] That record was however beaten the same year: a 5-carat (1.0 g) vivid pink diamond was sold for $10.8 million in Hong Kong on December 1, 2009.[30]

IdentificationDiamonds can be identified by their high thermal conductivity. Their high refractive index is also indicative, but other materials have similar refractivity. Diamonds cut glass, but this does not positively identify a diamond because other materials, such as quartz, also lie above glass on the Mohs scale and can also cut it. Diamonds can scratch other diamonds, but this can result in damage to one or both stones. Hardness tests are infrequently used in practical gemology because of their potentially destructive nature.[15] The extreme hardness and high value of diamond means that gems are typically polished slowly using painstaking traditional techniques and greater attention to detail than is the case with most other gemstones;[8] these tend to result in extremely flat, highly polished facets with exceptionally sharp facet edges. Diamonds also possess an extremely high refractive index and fairly high dispersion. Taken together, these factors affect the overall appearance of a polished diamond and most diamantaires still rely upon skilled use of a loupe (magnifying glass) to identify diamonds 'by eye'.[31]

Natural historyThe formation of natural diamond requires very specific conditions—exposure of carbon-bearing materials to high pressure, ranging approximately between 45 and 60 kilobars (4.5 and 6 GPa), but at a comparatively low temperature range between approximately 900–1300 °C. These conditions are met in two places on Earth; in the lithospheric mantle below relatively stable continental plates, and at the site of a meteorite strike.[32]

Formation in cratons
One face of an uncut octahedral diamond, showing trigons (of positive and negative relief) formed by natural chemical etchingThe conditions for diamond formation to happen in the lithospheric mantle occur at considerable depth corresponding to the requirements of temperature and pressure. These depths are estimated between 140 and 190 km though occasionally diamonds have crystallized at depths about 300 km as well.[33] The rate at which temperature changes with increasing depth into the Earth varies greatly in different parts of the Earth. In particular, under oceanic plates the temperature rises more quickly with depth, beyond the range required for diamond formation at the depth required. The correct combination of temperature and pressure is only found in the thick, ancient, and stable parts of continental plates where regions of lithosphere known as cratons exist. Long residence in the cratonic lithosphere allows diamond crystals to grow larger.[33]

Through studies of carbon isotope ratios (similar to the methodology used in carbon dating, except with the stable isotopes C-12 and C-13), it has been shown that the carbon found in diamonds comes from both inorganic and organic sources. Some diamonds, known as harzburgitic, are formed from inorganic carbon originally found deep in the Earth's mantle. In contrast, eclogitic diamonds contain organic carbon from organic detritus that has been pushed down from the surface of the Earth's crust through subduction (see plate tectonics) before transforming into diamond. These two different source of carbon have measurably different 13C:12C ratios. Diamonds that have come to the Earth's surface are generally quite old, ranging from under 1 billion to 3.3 billion years old. This is 22% to 73% of the age of the Earth.[33]

Diamonds occur most often as euhedral or rounded octahedra and twinned octahedra known as macles. As diamond's crystal structure has a cubic arrangement of the atoms, they have many facets that belong to a cube, octahedron, rhombicosidodecahedron, tetrakis hexahedron or disdyakis dodecahedron. The crystals can have rounded off and unexpressive edges and can be elongated. Sometimes they are found grown together or form double "twinned" crystals at the surfaces of the octahedron. These different shapes and habits of some diamonds result from differing external circumstances. Diamonds (especially those with rounded crystal faces) are commonly found coated in nyf, an opaque gum-like skin.[34]

Space diamondsNot all diamonds found on Earth originated here. A type of diamond called carbonado that is found in South America and Africa may have been deposited there via an asteroid impact (not formed from the impact) about 3 billion years ago. These diamonds may have formed in the intrastellar environment, but as of 2008, there was no scientific consensus on how carbonado diamonds originated.[35][36]

Diamonds can also form under other naturally occurring high-pressure conditions. Very small diamonds of micrometer and nanometer sizes, known as microdiamonds or nanodiamonds respectively, have been found in meteorite impact craters. Such impact events create shock zones of high pressure and temperature suitable for diamond formation. Impact-type microdiamonds can be used as an indicator of ancient impact craters.[32]

Scientific evidence indicates that white dwarf stars have a core of crystallized carbon and oxygen nuclei. The largest of these found in the universe so far, BPM 37093, is located 50 light-years (4.7×1014 km) away in the constellation Centaurus. A news release from the Harvard-Smithsonian Center for Astrophysics described the 2,500-mile (4,000 km)-wide stellar core as a diamond.[37] It was referred to as Lucy, after the Beatles' song "Lucy in the Sky With Diamonds".[17][38]

Transport from mantle
Schematic diagram of a volcanic pipeDiamond-bearing rock is carried from the mantle to the Earth's surface by deep-origin volcanic eruptions. The magma for such a volcano must originate at a depth where diamonds can be formed[33]—150 km (93 mi) or more (three times or more the depth of source magma for most volcanoes). This is a relatively rare occurrence. These typically small surface volcanic craters extend downward in formations known as volcanic pipes.[33] The pipes contain material that was transported toward the surface by volcanic action, but was not ejected before the volcanic activity ceased. During eruption these pipes are open to the surface, resulting in open circulation; many xenoliths of surface rock and even wood and fossils are found in volcanic pipes. Diamond-bearing volcanic pipes are closely related to the oldest, coolest regions of continental crust (cratons). This is because cratons are very thick, and their lithospheric mantle extends to great enough depth that diamonds are stable. Not all pipes contain diamonds, and even fewer contain enough diamonds to make mining economically viable.[33]

The magma in volcanic pipes is usually one of two characteristic types, which cool into igneous rock known as either kimberlite or lamproite.[33] The magma itself does not contain diamond; instead, it acts as an elevator that carries deep-formed rocks (xenoliths), minerals (xenocrysts), and fluids upward. These rocks are characteristically rich in magnesium-bearing olivine, pyroxene, and amphibole minerals[33] which are often altered to serpentine by heat and fluids during and after eruption. Certain indicator minerals typically occur within diamantiferous kimberlites and are used as mineralogical tracers by prospectors, who follow the indicator trail back to the volcanic pipe which may contain diamonds. These minerals are rich in chromium (Cr) or titanium (Ti), elements which impart bright colors to the minerals. The most common indicator minerals are chromium garnets (usually bright red chromium-pyrope, and occasionally green ugrandite-series garnets), eclogitic garnets, orange titanium-pyrope, red high-chromium spinels, dark chromite, bright green chromium-diopside, glassy green olivine, black picroilmenite, and magnetite. Kimberlite deposits are known as blue ground for the deeper serpentinized part of the deposits, or as yellow ground for the near surface smectite clay and carbonate weathered and oxidized portion.[33]

Once diamonds have been transported to the surface by magma in a volcanic pipe, they may erode out and be distributed over a large area. A volcanic pipe containing diamonds is known as a primary source of diamonds. Secondary sources of diamonds include all areas where a significant number of diamonds have been eroded out of their kimberlite or lamproite matrix, and accumulated because of water or wind action. These include alluvial deposits and deposits along existing and ancient shorelines, where loose diamonds tend to accumulate because of their size and density. Diamonds have also rarely been found in deposits left behind by glaciers (notably in Wisconsin and Indiana); in contrast to alluvial deposits, glacial deposits are minor and are therefore not viable commercial sources of diamond.[33]